www.jchps.com Journal of Chemical and Pharmaceutical Sciences ADSORPTION OF MANGANESE FROM CARTRIDGE AS BIOSORBENT

GOLAMARI SIVA REDDY *

Centre of Bioprocess Technology, Department of biosciences and bioengineering, K L U E F,

K L University Guntur – 522502 (India)

*Corresponding author: E.mail: Siva_bt@kluniversity.in

ABSTRACT

This investigation handles the adsorption of manganese from aqueous solution using cartridge. Effects of different parameters such as agitation time, adsorbent size, adsorbent dosage, initial concentration of manganese in aqueous solution, volume, pH of aqueous solution on removal of manganese are determined. From these investigations, one gram of cartridge powder of 82.5µm size is found to remove 90% of 20 mg/l manganese from 30ml of aqueous solution in 30min. These results indicate that adsorption of manganese is increased with an increase in adsorbent dosage and decrease in adsorbent size. A significant increase in percentage removal of manganese is observed as pH value increased from 4 to 7.28 and percentage removal is marginally increased from 1 to 4. The percentage removal decreased as pH value increased beyond 7.28. Freundlich and Langmuir isotherm models describe the adsorption data very well indicating favorable adsorption of manganese adsorbent. Freundlich isotherm is relatively more suitable than Langmuir isotherm. Hence based on results obtained it is found that cartridge powder is effective in manganese removal and can be appreciably considered as most versatile, economical and feasible adsorbent for removal of manganese from aqueous solutions.

KEY WORDS: Manganese, cartridge, Biosorption, Langmuir and Freundlich isotherm.

1. INTRODUCTION

Dyes have long been used in dyeing, paper and pulp, textiles, plastics, leather, cosmetics and food industries. Color stuff discharged from these industries poses certain hazards and environmental problems. These colored compounds are not only aesthetically displeasing but also inhibiting sunlight penetration into the stream and affecting aquatic ecosystem. Dyes usually have complex aromatic molecular structures which make them more stable and difficult to biodegrade. Furthermore, many dyes are toxic to some microorganisms and may cause direct destruction or inhibition of their catalytic capabilities (Bennani Karim, 2011). There is requirement on industry to minimize environmental release of color, even in cases where a small but visible release might be considered as toxicologically rather innocuous (Hebeish, 2011; Ben Hamissa, 2008; Ahmet Demirak, 2011). A major source of release of color into the environment is associated with the incomplete exhaustion of dyes onto textile fiber from an aqueous dyeing process and the need to reduce the amount of residual dye in textile effluent has thus become a major concern in recent years. An alternative approach to addressing the problem of color in textile dyeing effluent has involved the development of effluent treatment methods to remove color. These methods inevitably add to the cost of the overall process and some present the complication associated with the possible toxicity of degradation products (Hebeish, 2011). A variety of low cost adsorbents like blast furnace flue dust, activated carbon, crab shell, chitosan, coconut jute carbon, apple residues, peat, fly ash, sawdust, jack fruit peel, banana and orange peels, rice husk, tree fern, tanning gel particles etc. have been investigated for their effectiveness in removing of manganese (Ana Me'ndez, 2010; Arh-Hwang Chen, 2009; Russo, 2009). The interesting features of newly developed adsorbents are their highly versatility, high uptake and high tolerance for organics and regeneration. The present investigation looks into a specific process for the removal of manganese by adsorption using an economically low cost adsorbent developed from an easily, freely and abundantly available activated carbon.

This study presents the optimum values for the following parameters

- 1. Agitation time
- 2. Adsorbent size
- 3. Adsorbent dosage
- 4. Initial concentration of adsorbate in the aqueous solution
- 5. Volume of aqueous solution 6. pH of aqueous solution

2. MATERIALS AND METHODS

Preparation of the adsorbent: A cartridge is typically composed of 80-90% plastic polymer and 20-10% carbon black pigment. A cartridge particle has 100 microns size with a weight of 1 nanogram. A method of making toner

ISSN: 0974-2115

ISSN: 0974-2115

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences

particles include mixing a latex emulsion, a colorant emulsion and the optional additives are sent to a first reactor to form a slurry, discharging the slurry from the first reactor to a second reactor through the homogenizer; heating the slurry in the second reactor to form aggregated particles in said slurry; discharging the aggregated particles and slurry from second reactor to a third reactor; heating the aggregated particles and slurry in the third reactor to coalesce the aggregated particles to toner particles; discharging the toner particles and slurry from the third reactor to a fourth reactor, cooling the toner particles, optionally classifying said toner particles to remove coarse particles and optionally washing and drying said toner particles.

Preparation of manganese stock solution: In order to make Manganese stock solution 1gm of KMnO₄ of A.R. grade is taken in to 1000ml of distilled water. The stock solution made is of the concentration of 1gm/lit.

Effect of Agitation Time:

- 12 stoppered flasks are taken into which 50ml of 1gm/lit KMnO₄ solution is taken whose P^H is maintained at 3 and into that we add 0.5 gm of 150-mesh sized adsorbent.
- Then we keep all the flasks on to a rotary shaker and adsorption is allowed to take place. So, each flask is drawn for 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 minutes respectively
- After adsorption the adsorbent is filtered using a filter paper and then the filtrate is collected separately.
- Samples are collected and then the readings regarding the optical densities of each solution are noted only after calibrating the colorimeter with the blank solution using pure distilled water.
- Using the calibration curve, we can find out the concentration of manganese adsorbed from which we can find out the % removal of manganese.

Effect of Initial Concentration of KMnO₄ solution:

- 10 stoppered flasks are taken of different concentrations of KMnO₄ solutions. The different concentrations used are 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.07, 0.05, 0.03, 0.01(gm/lit) respectively.
- 50ml solution of each concentration is taken into the flask and its P^H is maintained at 3.To this flask 0.5 gm of the adsorbent (150-mesh size) is added.
- Now all the flasks are kept for shaking for an optimal time period of 110 minutes and then the samples are taken out for filtration using the filter paper.
- The so collected filtrate is then taken into the sample cell and then optical density of each concentration solution is noted. This was done only after calibrating the colorimeter using the blank solution prepared earlier from the pure distilled water.
- Finally, using the calibration curve, the concentration of KMnO₄ after adsorption can be known from which the % removal of manganese can be obtained.

Effect of Size of Adsorbent:

- Take 5 stoppered flasks into which we add 50ml of 1 gm/lit concentration of KMnO₄ solution and its P^H is maintained at 3.To that we add 0.5 gm of adsorbent of varying sizes.
- Normally the different sizes which we consider here are 6, 10, 36, 85, 150 mesh respectively and then all the stoppered flasks are kept for shaking for an optimal time period of 110 minutes on an orbital shaker.
- After shaking gets completed filtration operation is done from which the so collected filtrate is into the sample cell and the optical densities are noted for each sample.
- Then using the calibration curve plotted earlier, the concentration of KMnO₄ solution after adsorption is noted down and the % removal of manganese is thus calculated.

Effect of Dosage of Adsorbent:

- 5 flasks are taken of each with 50ml of 1 gm/lit KMnO₄ solution, its P^{H} is maintained at 3.To these flasks we add adsorbent of 150-mesh size of varying amounts of 0.1, 0.2, 0.3, 0.4, 0.5 gm respectively.
- All these flasks are kept for shaking for an optimal time period of 110 minutes and then they are taken out for filtration. After filtration the filtrate is collected and is taken into a sample cell whose optical density is noted from the calibrated colorimeter.
- Then using the calibration curve, we can get the concentration of $KMnO_4$ solution after adsorption from which we will be calculating the % removal of manganese.

www.jchps.com Effect of Volume of Solution:

- Firstly take 5 stoppered flasks into which we add 0.5 gms of adsorbent(150-mesh) and then we add varying volumes of stock solution prepared earlier of 1(gms/lit)KMnO₄. The stock solution is maintained at a P^H of 3. The varying which we use here are 10, 20, 30, 40, 50 ml of KMnO₄ stock solution.
- Then the flasks are kept for shaking on a orbital shaker for a time period of 110 minutes. After the shaking gets completed filtration is done from which the so collected filtrate is taken into the sample cell.
- By using the calibrated colorimeter, the optical density of each sample is noted down. And then from the calibration curve, the concentration of KMnO₄ solution after adsorption from which we will be calculating the % removal of manganese.

Effect of **P^H** of Solution:

- 5 bottle each of 50ml of 1gm/lit concentration of KMnO₄ solution is taken and the P^H of each flask is varied. The solutions of different P^H which we use are 3, 5, 9, 11, and 12 respectively. To these flasks we add 0.5gms of 150-mesh size adsorbent and keep them for shaking for an optimum time period of 110 minutes on a orbital shaker.
- Then the flasks are filtered off. From which the so collected filtrate is taken as sample to the colorimeter and the optical density is noted.
- Using the calibration curve, the concentration of KMnO₄ after adsorption is noted from which %removal of manganese ions are calculated.

3. RESULTS AND DISCUSSION

Effect of agitation time: The optimum agitation time is determined by plotting the % removal of mangenese against agitation time in fig.1 for different dosages at the interaction time intervals of 10 minutes to 120 minutes. The % Removal of manganese increases from 10 to 120 minutes. The % adsorption is found to increase up to 90 to 110 minutes and thereafter, negligible increase in % removal is noticed with agitation time. It is noticed that the rate of adsorption is faster in the initial stages because adequate surface area of the adsorbent is available for the adsorption of manganese. As the time increases, more amount of manganese gets adsorbed onto the surface of the adsorbent and surface area decreases. The maximum % adsorption is attained at 90 to 110 minutes of agitation. The % removal of manganese becomes almost constant after 90 to 110 minutes. All other experiments are conducted at this optimum agitation time.

Effect of initial concentration of KMnO₄ solution: The effect of initial concentration of manganese in the aqueous solution on the percentage removal of manganese is shown in fig.2. With an increase in Initial Concentration of kmno₄ Solution the % Removal of Manganese decreases. We can see at a concentration of 1 gm/lit of Kmno₄ solution the % removal is only 37.2%. Where as at a concentration of 0.01 gms/lit of Kmno₄ the % removal is more compared to the higher concentrations.

Effect of size of adsorbent: The percentage removal of manganese from aqueous solution with various particle sizes (6 μ m, 10 μ m, 36 μ m, 85 μ m and 150 μ m) is obtained at 0.5 gm. The results are shown in fig.3 with an increase in Size of Adsorbent the % Removal increases. If we consider the case of Activated Carbon over here when the mesh size was around 6 μ m the % Removal was 4.5%, where as that when the size reaches to around 150 μ m the % removal was 37.2%. The optimum size of adsorbent is 150-mesh sized adsorbent.

Effect of adsorbent dosage: The percentage removal of manganese is drawn against adsorbent dosage different in fig.4 with an increase in dosage of adsorbent the % removal increases. From the graph we can say that at 0.1gms of the adsorbent the % removal is only 2%, whereas at a weight of 0.5 gm of the adsorbent the % removal is around 39%. So, by this we can say that the optimum dosage over here was found as 0.5 gm.

Effect of volume of Kmno₄ solution: Change in % removal of manganese with variation in the volume of the aqueous solution from 10 ml to 50 ml is shown in fig. 5 with an increase in the volume of solution the rate of adsorption decreases which resembles that the % removal decreases. Here initially with 10ml of Kmno₄ solution the % removal is 99.5%, where as if we take the volume of 50 ml the % removal decreases to 38.8%.

Effect of pH of solution: pH influences the surface charge of the adsorbent, the degree of ionization and the species of adsorbate. So pH is an important factor controlling the process of adsorption. In the present investigation, adsorption data are obtained in the pH range of 3 to 12 for manganese initial concentration of 1

www.jchps.com

ISSN: 0974-2115 Journal of Chemical and Pharmaceutical Sciences

gm/lit and 1 gm of 150 μ m size adsorbent. The effect of pH of the aqueous solution on % removal of manganese is drawn in fig.6. The % removal of manganese dye is increased from 4.5% to 37.2% as pH is increased from 1 to 7.28. The graph reveals that % removal increased significantly from 3 to 12. With an increase in P^H of the solution the % removal decreases. Here for manganese at a P^H of 3 the % removal is around 38%, where as with the further increase in the P^H of the solution let it be 12 the % removal decreases to 4.5%. In the present investigation, the maximum % removal of manganese is obtained for 1 gm of 150 μ m size adsorbent at optimum agitation time. The principal driving force for dye ion adsorption is the electrostatic interaction (i.e) attraction between adsorbent and adsorbate. The greater the interaction, adsorption of dye will be more. With an increase in interaction, the dye ions replace H+ ions bond to the adsorbent for forming part of the surface functional groups such as –OH, -COOH etc. As the electro-negativity of Activated carbon powder is greater, more manganese ions are adsorbed.

Freundlich isotherm for adsorption of manganese: The Freundlich relationship is an empirical equation. It does not indicate a finite uptake capacity of the adsorbent and can thus only be applied in case of low and intermediate concentration ranges. However, it is easier to handle mathematically in more complex calculations. The Freundlich isotherm is given by $q_e = K_f C_e^n$ [9-14] Taking logarithms on both sides log $q_e = \log K_f + n \log C_e$ where K_f and n are known as Freundlich constants. Freundlich isotherms are drawn between log q_e and log C_e in figure.7. The resulting line has the correlation coefficient of 0.86.

Langmuir isotherm for adsorption of manganese: Since the chemical forces fall off very rapidly with distance, it is probable that chemisorption does not extend beyond a single layer of adsorbate on the surface of the solid. It can be anticipated as first pointed out by Langmuir that chemisorbed adsorbate layers may be only one molecule thick. The Langmuir is most widely used two-parameter equation. The relationship is given by $q_e / q_m = b C_e / (1+bC_e)[15-17]$ where C_e concentration of the adsorbate at equilibrium, q_e is the amount adsorbed at equilibrium per unit mass of adsorbent, q_m is the maximum amount adsorbed per unit mass of adsorbent and b is the coefficient related to affinity. from above Equation can be rearranged as $(C_e/q_e) = 1/b q_m + C_e/q_m$ From fig.8 between (C_e/q_e) and C_e , we can calculate the slope $(1/q_m)$ and the intercept $(1/b q_m)$. Further analysis of Langmuir equation is made on the basis of separation factor, R_L .

Table.1. variation in 76 removal of KivinO4 with time					
Agitation Time(min.)	Optical Density	Concentration of KMnO₄ after	% Removal		
		removal(gm/lit)			
10	0.90	0.385	61.5		
20	0.87	0.350	65.0		
30	0.85	0.332	66.8		
40	0.84	0.320	68.0		
50	0.84	0.320	68.0		
60	0.83	0.315	68.5		
70	0.82	0.305	69.5		
80	0.81	0.297	70.3		
90	0.73	0.240	76.0		
100	0.71	0.225	77.5		
110	0.71	0.225	77.5		
120	0.72	0.233	76.7		

Table.1.Variation in % removal of KMnO₄ with time

Table.2.Variation	in %	removal	with i	initial	concentration	of KMnO	4 solution
--------------------------	------	---------	--------	---------	---------------	---------	------------

Initial Concentration of KMnO ₄ Solution(gm/lit)	Optical Density	Concentration of KMnO ₄ after removal(gm/lit)	% Removal	
10	0.71	0.005	77 5	
1.0	0.71	0.225	//.5	
0.8	0.50	0.128	84.0	
0.6	0.38	0.085	85.83	
0.4	0.26	0.055	86.3	
0.2	0.13	0.025	87.5	
0.1	0.07	0.011	89.0	
0.07	0.06	0.007	90.0	
0.05	0.03	0.005	90.4	
0.03	0.02	0.002	93.3	
0.01	0.01	0.001	90.0	

Mesh Number	Optical Density	Concentration of Kmno ₄ Solution after removal (gm/lit)	% Removal
6	1.15	0.955	4.5
10	1.10	0.845	15.5
36	1.07	0.770	23.0
85	1.05	0.707	29.3
150	1.02	0.628	37.2

Table.3.Variation in % removal with size of adsorbent

Table.4.Variation in % removal with dosage of adsorbent

Weight of Adsorbent(gm)	Optical Density	l Density Concentration of KMnO ₄	
		Solution after removal (gm/lit)	
0.1	1.02	0.628	37.2
0.2	0.97	0.500	50.0
0.3	0.89	0.375	62.5
0.4	0.84	0.325	67.5
0.5	0.71	0.225	77.5

Table.5.Variation in % removal with volume of Solution

Volume of	Optical Density	Concentration of KMnO ₄	% Removal
Solution(ml)		Solution after removal (gm/lit)	
10	0.02	0.005	99.5
20	0.09	0.022	97.8
30	0.14	0.03	97.0
40	0.23	0.05	95.0
50	0.71	0.225	77.5

Table.6.Variation in % removal with initial $\mathbf{P}^{\mathbf{H}}$ of Solution

Initial P ^H of Solution	Optical Density	Concentration of KMnO ₄	% Removal
		Solution after removal (gm/lit)	
3	0.69	0.212	78.8
5	0.73	0.24	76
9	0.89	0.375	62.5
11	1.00	0.57	43
12	1.14	0.932	6.8

Figure.2.Variation in % Removal of Kmno₄ with Initial Concentration of Kmno₄ Solution

www.jchps.com

Figure.3.Variation in % Removal of Kmno₄ with Size of Adsorbent

Figure.5.Variation in % Removal of Kmno₄ with Volume of Solution

Figure.7.Freundlich isotherm

Figure.4.Variation in % Removal of Kmno₄ with Dosage of Adsorbent

Figure.6. Variation in % Removal of Kmno₄ with P^H of Solution

Figure.8.Langmuir isotherm

CONCLUSION

The analyses of the experimental data result in the following conclusions:

1. Among Activated Carbon and Toner, Toner is considered as the best adsorbent than Activated Carbon in removing the manganese from aqueous solutions.

2. With increase in time the % adsorption of manganese increases and reaches an optimum condition above which there is no further increase in the adsorption rate of manganese. The optimum time maintained is 110 minutes.

3. As the initial concentration of manganese increases, % removal of manganese always decreases.

4. The decrease in size of the adsorbent particles results in increased surface area which increases the adsorption rate of manganese. Whereas that for Toner (150-mesh), the % removal of manganese is nearly 78%.

5. With an increase in the dosage of adsorbent the %adsorption of manganese also increases.

6. As the P^H of manganese stock solution increases %adsorption of manganese also increases.

REFERENCES

Ahmet Demirak, Ömer Dalman, Ezel Tilkan, Dilek Yıldız, Evşen Yavuz, Cansu Gökçe, Biosorption of 2,4 dichlorophenol (2,4-DCP) onto *Posidonia oceanica* (L.) sea grass in a batch system: Equilibrium and kinetic modeling, Microchemical Journal, 99, 2011, 97–102.

Ana Me´ndez, Sandra Barriga, Antonio Saa and Gabriel Gasco, Removal of malachite green by adsorbents from paper industry waste materials, J Therm Anal Calorim, 99, 2010, 993–998.

Arh-Hwang Chen and Shin-Ming Chen, Biosorption of azo dyes from aqueous solution by glutaraldehydecrosslinked chitosans, Journal of Hazardous Materials, 172, 2009, 1111-1121.

Baoe Wang and Xiu Guo, Reuse of waste beer yeast sludge for biosorptive decolorization of reactive blue 49 from aqueous solution, World J Microbiol Biotechnol, 27, 2011, 1297–1302.

Bao-E, Wang, Yong-You Hu, Lei Xie and Kang Peng, Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads, Bio resource Technology, 99, 2008, 794–800.

Bellir Karima, Bencheikh Lehocine Mossa And Meniai A-Hassen, Removal of Methylene Blue from aqueous solutions using an Acid Activated Algerian Bentonite: Equilibrium and Kinetic Studies, International Renewable Energy Congress November, 5-7, 2010.

Ben Hamissa AM, Ncibi MC, Mahjoub B and Seffen M, Biosorption of metal dye from aqueous solution onto Agave americana (L.) fibres, Int. J. Environ. Sci. Tech., 5 (4), 2008, 501-508.

Bennani Karim A, Mounir B, Hachkar M, Bakasse M and Yaacoubi A, Adsorption of Malachite Green dye onto raw Moroccan clay in batch and dynamic system, Canadian Journal on Environmental, Construction and Civil Engineering, 2, 2011, 2.

Bhole BD, Bratati Ganguly, Anusha Madhuram, Deepti Deshpande and Jui Joshi, Biosorption of methyl violet, basic functions and their mixture using dead fungal biomass, Current science, 86(12), 2004.

Catherine Faur, H'El'Ene M'Etivier- Pignon And Pierre Le Cloirec, Multicomponent Adsorption of Pesticides onto Activated Carbon Fibers, Adsorption 11, 479–490, 2005.

Chulhwan Park, Myunggu Lee, Byunghwan Lee, Seung-Wook Kim, Howard A. Chase, Jinwon Lee and Sangyong Kim, Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii, Biochemical Engineering Journal, 2006.

www.jchps.com

Hameed BH, Krishni RR and Sata SA, A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions, Journal of Hazardous Materials, 162, 2009, 305–311.

Hebeish A, Ramadan MA, Abdel- Halim E, Abo-Okeil A, An effective adsorbent based on sawdust for removal of direct dye from aqueous solutions, Clean Techn Environ Policy, 13, 2011, 713–718.

Rout Chadetrik, Saza Radhi naif and Vikas Beniwal, Sorption Potential of Penicillium Janthinellum for removal of cu(ii) from Electroplating industrial effluent), Int J Pharm Bio Sci, 4(1), 2013, 847 – 858.

Russo M.E., Marzocchella A., Olivieri G., Prigione V., Salatino P., Tigini V. and Varese G.C., Characterization of dyes biosorption on fungal biomass".9th international conference on chemical and process engineering, 2009, 110-119.

S.Abirami, S.Srisudha and P.Gunasekaran, Biosorption of Chromium from Tannery effluent using Biomass of Sargassum wightii (greville), Int J Pharm Bio Sci, 3(3), 2012, 584 – 595.

Sarioglu M and Atay UV, Removal Of Methylene Blue By Using Biosolid, Global NEST Journal, 8(2), 2006, 113-120.